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In this paper we extend the results on discretization errors in linear
L, -approximation problems by Cheney [4] to a broad class of nonlinear
L,-approximation problems with constraints where 1<p<oc. ¢ 1987 Academic

Press, Inc.

|. INTRODUCTION

Let (X, ||-|y) be a linear normed space of dimension n generated by
Uy, U, and let A € X be a nonempty closed set. Further, let 1 <p < oo and
BcR® be a compact set; in particular, let B=[c¢,d] f 1 <p<oc. Then
C(B) shall be the space of all real-valued continuous functions on B equip-
ped with the L -norm

max |/(0) itp= .
1la= {0 0
[lnaral” i<p<e.

¢

for fe C(B). Finally, let re C(B) be fixed and 7: 4 — C(B) be a continuous
operator. Then we consider the nonlinear approximation problem

(P) Minimize |r— Tallgon A4
with
p=inf{||r—Ta| zlac A}. (2)
We say that de A is a solution of (P) if the infimum in (2) is achieved for
de A.
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In practice it usually is impossible to solve (P) directly. In order to han-
die (P) numerically, one will, therefore, try to “simplify” the problem
through discretization in the following sense. Let B, < B be compact; in
particular, for 1 <p < oo let B, consist of k points £¥ e R, 1 <i<k, with

()Séllki<ég-k)< <€}(k)<d
where ¢® e [ %), ¥ and the p!* are such that y*' < y!* and
Lo, d]=[p60 y{To Dy p9T0 - w [, pE T

Setting

=yt —ph 1 i<k,
we define the discrete semi-norm corresponding to (1) by

max L/ (E)] if p= o0,
||f“BA = & Up
{Z 1f(§§k))|phfk’} if 1 <p<occ.

i=1

We assume further 4,24 to be a closed upper set of 4 in X and
T: A, — C(B) to be defined and continuous on 4,. (Note that the range of
Tis in C(B)= C(B,)). If e.g. A is the solution set of infinitely many linear
constraints, 4, may be the solution set of finitely many of them. Then
instead of (P) one will try to solve the problem

(P,) Minimize |r—Ta| s on A,.
In correspondence with (2) we set
pr=inf{|lr—Talls | ac A;]

and call 4, € A, a solution of (P,) if it exists.

A question of obvious interest is now: provided that {B,},.n and
{ A, | r e n are sequences which in an appropriate way converge to B and 4,
resp., do the p, tend to p for k - oc0? It is well known that this question
can be answered in the affirmative, if T 1s linear and e.g. 4 =A4,=X (cf.
[4,20]). Furthermore, it has been shown that there are nonlinear
problems where the p, do not converge to p (see [6] and the examples
below). This is disturbing in view of the fact that almost all algorithms for
the solution of approximation problems, including those for the solution of
semi-infinite programming problems (cf. [9]), are based on discretization.
Hence it is of big practical importance to identify such operators T for
which the requested convergence can be shown.
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For linear unconstrained problems. i.c., if 7 is lincar and 4 = A4, = X the
problem of the convergence of discretization errors for p= »x has been
studied first by Cheney (see [4]) The author of [20] gives a
corresponding proof for p=1 which can be casily transferred to the case
| <p< . Results on the rate of convergence have been obtained in [3]
for p=oc and in [14] for p= 1. Finally. for linear problems which are
equivalent to certain semi-infinite programming problems a convergence
result of the requested type can be found in [9].

Concerning discrete nonlinear approximations, almost exclusively
exponential and rational approximation problems have been investigated
so far (cf. [1,2, 11,15, 17,18, 19]). However, it has been noted that the
discretization of approximation problems can be considered as a special
perturbation problem in optimization and hence can be tackled with the
available theories in this connection (see e.g. [10]). We shall discuss the
relation of our results to this latter approach in Remark 1 below. OQur aim
here is to derive sufficient conditions for the convergence of the p, to p
which can be actually verified in many circumstances.

The plan of this paper is as follows:

In Sect. 2 we prove convergence of the p, under the assumptions that the
(P,). k =k, possess solutions d, € A4, and that 'Td, |, .5 1s equicontinuous
on B. In the remaining sections we arc concerned with the verification of
these assumptions in specific situations. So we first show in Sect. 3 that in
case 7' is linear existence of the ¢, (which often can be guaranteed then)
implies the equicontinuity of | 7d, ), ... Thereby results in [4] and [20]
are generalized since we allow here problems with constraints and since
the proofs are valid for every L, -norm. Then in Sect. 4 we turn to non-
linear problems. We first provide a lemma which for many nonlinear 1., -
problems ensures the requested existence of solutions and equicontinuity.
Afterwards we study the corresponding propertics of T for 1 <p < x.

We have applied our results successfully to a variety of nonlinear
approximation problems, in particular to problems where 7 has been a dif-
ferential operator. In the final part of this paper we present two such
applications and thereby show that some former results of other authors
follow quite easily from our theory.

2. A CONVERGENCE THEOREM

We begin by providing some definitions. Let 7 be defined on S< X.
Then for « >0 we set

C,(S)y=1{aeS||Tallz<a} (3)
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and correspondingly
CH(S)={ae S| |Tall g <o} (4)

Further, we fix some a, € 4 and a number ¢ >0 (¢ =0 is possible if p = o)
and define

ag=lr—Tayl g+ |rllz+0 (5)

Moreover, if M and Q are nonempty subsets of a linear normed space
(Z, |- ,), we write

h(M, Q)=sup inf |x—y|.,.

xeQreM

If M ..n is a sequence of nonempty subsets of Z, then
hm, _, , A(M, M, )=0 if and only if for each ¢>0 there is a number
k{¢)e N such that for all k= k(e)

M, cM,={xeZ] inf |x—y|,<¢e}.
yeM

We are now in the position to state the following two assumptions.

AssUMPTION 1. {B,},.~ is a sequence of compact subsets of B in
(R, || - [}5) with lim, , , A(B,, B)=0 where | - |, is the Euclidean norm.

ASSUMPTION 2. f4,, N 1S a sequence of closed subsets of (X, “ ' HX)
WAk ke
where

(1) A€ - <CA,,, €4, € <4,cX
Further, T is defined on A, for a ke N, ie. T: A; —» C(B), and either
(i) lim, ,, h(A, A,)=0or
(i) lim, ., A(C, (A4), Ck (A4,))=0.

With regard to Assumption 2 let us mention that in applications (i1}
may be satisfied because of the possible boundedness of the sets C, (4) and
(% (A,) while at the same time (ii) may not be true. Obviously,
Assumption 2 is fulfilled if 4 =4, for all ke N.

The level sets (3) and (4) play an important role in approximation
theory in connection with questions of existence of solutions and of
convergence of algorithms (e.g. [16]) as well as questions arising with
discretization (see Sect. 4). This is due to their possible boundedness and
the following facts.
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Lemma 1. (i) p=inf} |r — Tuliglae C (A)}.
(A).
(i)  Under Assumptions 1 and 2 there is a number k= k, where k, =k
if p=c. such that for all k =k,

If de A is a solution of (P), a is element of C

X0

pe=1inf{|[r —Ta| g lae Ck (A,)].

Further, if G, € Ay solves (P, ). k =k, a4, is in C} (A;).

Proof. (1)
p=inf{|r—Tal zlae A and lr—Tallg<|ir—Taol 55
zinf {|r — Tal ylac A and | Tall g < oy} 2 p.

From the same inequalities it i1s obvious that a solution é¢e 4 of (P) is in
C,,(A) if 1t exists.

(ii) By virtue of Assumption 2, a, is element of 4,. Hence
pezinfl|r—Ta| s lae A, and | Tali g < lIr — Tagll g + 7l 5, )

If p=c,
‘?"*TaoHBA*'H”“mglu (6)

for all k>k is obvious. In case 1 <p< %, (6) is true for all sufficiently
large k by virtue of the definition of the Riemann integral. The remainder
of the proof follows the proof of (i).

We now give the main result of this paper. For that we note that
N=|Ji>¢ C5(A4,) is a subset of A; and define

N.=laeX||a—h|y<eforaheN) (7)

to be an ¢-neighborhood of N in X,

THEOREM 1. Let Assumptions | and 2 be fulfilled. Further, let T be con-
tinuous on A for ke N. Moreover, let T be uniformly continuous on N, Ay
for an é >0 in case A+~ A, for some k = k. Further, let (P,) have a solution
d,€ A, for each k=k and let {Ta, ). be equicontinuous on B. Then we
have:

(i) lim, ., pr=0p.
(i) lim, _ , |r—Ta,|5=p (4, may not be in A).
If in addition there is a constant C so that |a, | y< C for all k >k, then

(i) {dy x>z possesses at least one accumulation point which lies in A
and each such accumulation point solves (P). Moreover, if (P) has a unique
solution ae A, then lim, _,  |la—d,| =0.
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Proof. (i) With respect to Assumption 2 we define either

M=A and M,=A,

or
M=C,(A4) and M, =C% (A,)
In any case M and M,, k >k, are nonempty sets. We fix now &€ (0, £]

and set

0, ifd=4, forallk>k,
sup{[[Ta—Th|ig|lla—blly<e, a,be N;n Az}, else.

Obviously, we have A(g) - 0 for ¢ —» 0.

Now we observe first that by Lemma 1 there is a number k,>k such
that 4, is in C’;U(Ak):C_Mk if k = k,. Further, due to Assumption 2, there
exists a number k, = k such that we have M, = M, for all k > k,. Hence if
k = max(k,, k,), for 4, we can find an element 4, e M with ||d, —4,]| y <e.
In particular, we can choose d, =d, if A=A, for all k>£k.

Next we note that in any case M < 4 < A; holds true. Therefore we can
infer that 4, as well as a, belong to (N,nAg)=(N;nA;) for all
k =z max(k,, k). Thus if k 2 max(k,, k,) we have

inf |[r—Tallg—llr — Ta;| s < Ir — Tayll g — llr — Tdy | < A(e). (8)

ae A

Our next objective now will be to study the expression
lr—Ta,ll s — inj Ir—Tall g, = lr = Tayll g — lIr — Tdg| g,- 9)
a€ Ay

For fe C(B) we define
o(f, e)=sup{|f(x)—f (W | Ix—yl.<e,  x,yeB} (10)
to be the modulus of continuity of f on B. Then we set

u(z) = sup o(Tdy, ¢)
k=zk

and we observe that u(e) tends to zero with ¢ - 0 because of the equicon-
tinuity of {7a,},>¢ on B. Further, due to Assumption 1 there is a number
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kyzk so that h(B,, B)<¢ for all k> k,. Let now A=k, and let first
1 € p < o. Then choose 0*)¢ B such that

Ir(0F) — (Ta (0| = max |r(x)—(Ta,)(x)l.
1'}“, AN \"[M

Hence, we have || — 6%, <¢ for all ie {1,..,k!. If we use now

k Ak

I Taly= 3 [ 10— (Tl d

i=1 "%

k
<Y [HOR) — (Ta )0k 7 btk

=1

and apply Minkowski’s inequality twice, we obtain

lr—Ta, |l g— ¥ — Tdy Hm

S{Z |LHO) = (T 0% ] — [r(EW) — (T, (€W ]vh:"'} p

i=1

i 1'p
<{ 3 o -zl

i=1

K 1.p
+{Z (Ta ) (0% — (Ta )& ‘“)|ﬂhm}

i=1

< K{o(r, &)+ u(e)] (11)

where K= (d—¢)"". In case p=oc (11) is easily seen to be true with K= 1.
Hence combining (8), (9), and (!1) we get for 1<p<x and
k= max(kg, k. k)

inf |r—Talg— inf |[r—Tal g <d(e)+ K{w(r, &)+ u(e) }. (12)

ae A we Ay

By virtue of our assumptions, the right-hand side of (12) tends to zero with
¢— 0. For p=oo it is easily seen that the left-hand side of (12) is always
nonnegative since we have B, < B and 4 < 4,. Thus, (i) is proved in this
case. If 1<p<oo, for every ae A there is a number E(a, h'*') for
A" =max, _, ., h'® so that E(a, h'*’) >0 for /'*' -0 and

{j Ir(x) = (Ta)(x)|” dx}

= { Y IH(ER) = (Ta) ) hf“} + E(a, ).
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We note that #**) tends to zero if and only if 4(B,, B) does so. Now we
choose be A so that |r—Th| z—inf,_,|r— Tal s <e Then there exists a
k4= k such that |E(b, h'¥)| < for all k = k. Hence

pre=|r—Thlg+Eb h)2p,—e, k=k;. (13)

Combination of (12) and (13) yields the requested result.
(ii) From (8) we have

p—pi—AMe)<lr—Ta | p— lIr — T |l g, (14)
for all k= max(k,, k,) and from (11) and (14) we obtain recalling (1)
[ Nr—=Tag | g— lIr = Tagll g | =0 for k - oc. (15)
Finally, we write
lo—=llr—=Ta, |l gl <lp—ppl + | Ir=Tayll = lr—Tayli 5|

so that (ii) follows from (i) and (15).

(iii) By assumption all d,, k >k, are elements of the compact set
{ae X||lall y < C}. Hence there exists a subsequence {d,}.n Of {d;}iss
which converges to an element a e X. Since again by Lemma 1 4, is in M,
for all sufficiently large i/ and since M is a closed set, it follows easily from
Assumption 2 that & lies in M. Further, since T is continuous on Ag,
lr — Tdy, |l g tends to ||r — Tdl| p for i = oc. Therefore, from (ii) we get that g
is a solution of (P). Moreover, if (P) possesses a unique solution de 4,
every convergent subsequence of {d,}..; and thus the whole sequence
converges to 4.

Remark 1. 1f (P) is being considered as a special optimization problem
and (P,) as a corresponding problem with perturbed data, the questions of
this paper can be attacked with the perturbation theories in optimization.
However, as we shall show, little is gained by such an approach since the
verification of the assumptions of these theories for our problem requires
most of the arguments of the proofs presented here.

Let us first relate to the results in [127]. We can fit the problems (P) and

(P,) into the model considered in [12] if we choose the parameters there
as follows:

E:={) C5(4)0Cy(4)  (equipped with ||| ),

k=k

X=Co(A)  S:=X.  flx):=lr—Tx|,
Xio= Cgu(Ak)a Se =X, fk(x)-':”r—TXHBks

64049 3-5
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where we suppose that Assumptions 1, 2(1), and (i1} are fulfilled and 7 is
continuous on A;. (The reader may verify that in case of Assumption 2(i1)'
Theorem 1 and Lemma 3 remain valid for E instead of N,n 4;). Then
Satz 3.1 in [12] shows first that for the proof of Theorem 1 (1) the
assumptions of the existence of the &, and the equicontinuity of {74, |, .,
on B can be replaced by the “uniform equicontinuity of the f, on £ and
condition (3.1) ebd. However, if we wish to establish this equicontinuity of
the f, here for nonlinear 7, we shall assume the compactness of £ (which
implies the existence of the d, (cf. Lemmas 1 and 3)) and, moreover, have
to verify condition (3.3) in [12] (see Lemma 3.2 ebd.). The proof of this
latter condition can be accomplished with arguments similar to those
which we need for the proof of Theorem | (i) above. The reader may
further confirm that in case T is linear (where the assumption of the com-
pactness of F usually is too strong) the proof of the assumptions of Satz 3.1
requires similar estimates as we shall derive them in the proof of Theorem 2
below.

Corresponding considerations hold true for the theorem in [107]. (We
also note that condition (1.1) there can only be fulfilled if p = o¢). Further-
more, the author of [13] summarizes a large number of results in
parametric optimization by using the concept of set-valued mappings. But
again the verification of the assumptions of the respective theorems for our
problem necessitates the same boundedness and equicontinuity
assumptions which we referred to above (cf. condition (2.2) there).

3. LINEAR OPERATORS

If T is a linear operator, the existence of solutions to (P) and (P,) can
often be proved with classical arguments. For example, by the following
Lemma (P) as well as (P,) has a solution if, e.g., 4 = X and if T is the iden-
tical operator.

Lemma 2. Let T be linear. If the image T(A) of A under T is closed, (P)
possesses a solution de A. Correspondingly, if T(A,) (k=k) is closed in
C(By) with respect to || - || g,. (Py) has a solution d, € A,..

Proof. By our assumptions, the set

{Tae T(A) | Tall <o} = T(X),

where «, is defined by (5), is compact. Hence the existence of de A can be
concluded from Lemma 1 and Weierstrass’ theorem. Correspondingly, the
existence of d, is proved.

Let us further mention that for p = oo another tool for the verification of
the existence of solutions to (P) and (P,) is given by Lemma 3. In com-
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bination with Theorem 1 and Lemma 2 the following theorem now extends
results of [4, 20] for p= oo and p =1, respectively.

THEOREM 2. Let Assumptions | and 2 be fulfilled and let T be a linear
operator from X into C(B). Further let (P,) have a solution 4, € A, for each
k = k. Then the following is true:

(i) {Ta,}.- is equicontinuous on B.
(i) If Tv,,..., Tv, are linearly independent on B, there is a constant C
so that |G, | x < C for all k= k.

Proof. (i) Let w; = Tv, for ie {1,.., n} and let the first m <n of the w, be
linearly independent. Further, for ¢ >0 we define

Q,,(e)= max w(w,e)

I<is<m

with ® (10). Obviously, £,,(¢) tends to zero if £¢—0. Then if
Ta, =YY", B*w,and ||x —y|, <& we obtain

(Ta,)(x) = (Ta ) (VI < 1B .0 (e)

where |- |, is the /,-norm in R™. Hence the proof of (i) is completed if
there is a constant M such that ||f%||, < M for all k >£.
For that we define

m

Z Biw,

i=1

6, = min

1Bl =1

B
Due to the linear independence of the w; we have 6, > 0.

Now we choose &> 0 sufficiently small so that 2,,(¢)<8,,/(2K) with K
from (11). Then there is a number k, >k so that h(B,, B)<ceforall k=k,.
If we make use of (11) for =0, we finally get for all feR™ and k> k,

0,181, < Z Bw.| <KQ,()pl,+ Z Biw,
i=1 B i=1 By
Hm m
g—z_”B”l'i' Z Biw,
i=1 By,
so that by Lemma 1 we have for all £ > max(k,, k)

2 | & 20

1B <= | X Biwi| <52 (16)
m =1 By m

(i1) Let now @, =3¥7_, y%v,. Then in the proof of (i) we have m=n and
B =% 1<i<n, so that (ii) is a consequence of (16).



266 REMBERT REEMTSEN

Remark 2. Let A= X, T be linear, and Tv,.... Tr, be lincarly indepen-
dent. If I <p< oz, then (P) always possesses a unique solution. In case
p=1 or p=oc, it is well known that a solution of (P) is unique if
Tv,,.... Tv, form a so-called Haar system on B (e.g. [20]).

‘n
4. NONLINEAR OPERATORS

If T is a nonlinear operator, in general the existence of solutions to (P)
and (P,) is difficult to verify, not to speak of the uniqueness of solutions. In
4.1 we will provide a condition which for p= oo guarantees existence of
solutions de A4 and 4,€ 4, and in many situations equicontinuity of
{Td,} e n- In 42 we will study this condition for the case that | <p < «.
Finally, in 4.3 we will apply our results to two examples.

4.1. The case p= ¢

Throughout this subsection we assume p=oc. Then we can state the
following lemma.

LEMMA 3. Let Assumptions V and 2 be satisfied and let in addition

B.€B,, & <B keN. (17)

Further, let there exist a number k such that T is continuous on A; and
C ’;’(\(A,;) is bounded. Then we have:

(i) (P)and (P,). k =k, possess solutions Ge 4 and d, € A,. resp.
(i1) T is uniformly continuous on N, A; for each ¢ >0 with N_(7).
(iii)  There is a constant C such that |d, | < C for all k> k.

Proof. It can be easily proved that due to our assumptions
Co(A)S - SCh (A, ) SCE(A4,), keN, (18)

Ay 2y

holds true. Hence C, (A4) and C;)(AA ), k =k, are bounded and by the con-
tinuity of T also closed sets in X. So recalling Lemma | we can establish (i).
Finally, (ii) and (iii) follow from the fact that (18) implies \J, .. ¢ C; (A4,) =
Ch (Ag).

Statement (1i1) of Lemma 3 often ensures the equicontinuity of the
{Ta,}, . Furthermore (18) shows that boundedness of C* (A;) for a
keN guarantees boundedness of C,,(A). Unfortunately, in practice it is
easier to examine C, (A4) than Cﬁo(A;.), and, as the following example
shows, boundedness of C, (A4) by no means implies necessarily bounded-
ness of any Cﬁ“(Ak). Moreover, this example shows that the uniform
problem can have a solution while at the same time none of the discrete
problems possesses one (see also [6] for another example).
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ExampPLE 1. Let A=X=R, B=[0,1],r=0o0n B, and let T: X — C(B)
be defined by

(Ta)(x)=(1+a*) e “~, acR

Then because of

max [(Ta)(x)| =1 +a>

xe B
C,(A) is bounded for every a>1 and inf, . ||Talz=1 is uniquely
achieved for « =0. If we define now B, = [¢,, 1] where {g,},., is a non-
increasing sequence of positive reals which converges to zero, then we have

max [(Ta)(x)| = (1 +a’) e “*

ve By,

and none of the C4(4) is bounded. Besides inf,_ |7Ta]z =0 is not
attained for any ae R.

Remark 3. So far we have considered the case that the range of T is in
C(B). However, we often will encounter the situation that T'=(T,.., T,)'
where T, maps 4 into C(B") and the B, ie {1, 2,.., ¢}, are compact sub-
sets of R*. In this case T is a mapping from A into the product space
C(B""yx - x C(B') which we equip here with the norm

el p= max [r|ga, r; e C(B"),
l<i<y

where ||z is the sup-norm on B'’. for every ie {l..,q} let now
{B{"}, .~ be a sequence of sets which fulfills Assumption 1 and let

[irlll5 = max ir;l o, keN.

si<y

Further, let here r, e C(B"), ie {1,.., g}, be given and let us consider (P)
and (P,) with the two-bar norms being replaced by the three-bar norms.
Then if we substitute ||| ||z and ||| - ||, for |||z and |- || 5, throughout
the preceding part of this paper, resp., and if the properties which we
assume above for T are required for all components 7,, i€ {1,.,q}, of T
here, Theorems 1 and 2 as well as Lemmas 1, 2, and 3 remain valid. In this
way convergence of the discretization errors can for instance be shown for
the multi-dimensional constrained approximation problems in [5].

42. The case |l <p<w

Let us demonstrate first that a similar situation as in Example 1 for
p =0 can appear if 1 <p <o,
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ExaMmpLE 2. Let T be defined as in Example 1, but choose p=1 here.
Then for all a #0 we compute

1 N N
|\Ta|}3=£)(1+a1)e Sgy=(14+a I —e “)>1.

Hence inf, || Tallz=1 is uniquely achieved for «=0. If now
0<EW << - < ERI L, we get

k
k(1+a®)e 1 max A > Y [(Ta)(E) h* = | Tal

1<i<k Pt

22tk . .
Zk(l+a’)e ““* min A

I<i<hk

>k(1+d*)e “ min A%

I<isk

Hence for fixed &, || Tal| 5, tends to zero for |af — . Therefore, none of the
C%(A) is bounded as well as inf,. [ Tallz =0 is not achieved for any
aelR.

However, opposite to the case p = oc, for 1 <p < = it is also possible as
the following example shows that all of the C*(A,) are bounded (which
implies the existence of solutions to the discrete problems) while C_(A4) is
unbounded for every « >0 (and the uniform L, -problem has no solution).

ExaMpPLE 3. We assume again A=X=R, B=[0,1] and p=1. In
addition we define r=0on B and T: X — C(B) by

(Ta)(x)= (1 +a’)/(1 + a*x), aeR.
Then for a # 0 we have

P+ a? 1 +a°
T, :J dx = log(1 + a*
| Tall 15 a'x X p og(l +a”)

which tends to zero for |a| — co. Hence inf,_ || Ta| ;=0 where the infimum
is not achieved for any ae R. Further, if 0=¢0' <& < -+ < &R <1, we
obtain

k
1Tall g, = 3. TR =1 +a*) 2 hPa’.
i=1

Consequently, for fixed k, || Tal 4, tends to infinity for |a] — co. Therefore,
all C%(A4) are bounded and all discrete problems possess solutions. It is not
seen here whether the p, converge to p or not.
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Thus for 1<p<oo a result corresponding to Lemma 3 cannot be
established. However, we can obtain some insight into the situation here if
we relate the level sets C,(A4) and C%(A,) where C(B) is supplied with an
L,-norm, 1 <p<o0, to the corresponding sets where C(B) is associated
with the supremum norm. For that matter we write here |-, and
| - |l 5., instead of || - || s and || - || 5, and rename C,(S) and C%(S) by CZ(S)
and C5”(S) in order to mark that the (semi-) norm on C(B) equals | - | 5,
and | - || g, ,. resp. Then we can state the following lemma.

LeMMA 4. Let T be defined on S X and | < p < . Then we have

(i) CUSI2CL 1l S)2CF i, (S),
(il) CEUS)2CEE, 11, (S)2Ch7_ (S),
(iii) CL7(S)2CLiul(S)2 Ciliny oy 10 (S)

where p*'=min, _,  h'*.

Proof. 1f ve Clc, d] we have by Holder’s inequality

d
ol = [ 10000 11 dx < ol g 1 g

«

= vl gp(d—c)' "7 <ol g (d—€)

which yields (1). Similarly we obtain

K
ol = 3 1o(ER) v perr v

i=1
k (p—1)p
< vl s, { > hf“}
i=1

= lloll 5, (d—¢)' 7 < ollp, , (d—c) (19)

and hence we can derive (ii). Finally, with [v(&%))] = max, ¢, < [0(ER)] we
arrive at

k
ol g, - 1 = [o(EENpF < Y Jo(EFN AR = |io] 4,

i=1

which together with (19) implies (iii).
Thus, by previous arguments (cf. Lemma 3) we can draw the following
conclusions from 1 ¢mma 4.

Conclusions. (i) If T is continuous on A4 for | |, and Ci(A4) is
bounded for ¢ = a, max(1, d— ¢) with ay (5), then (P) has a solution de A4
for all p, 1 <p<oo.
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(11) Let Assumptions | apd 2 be fulfilled. Further, let (17} hold true and
7 be continuous on A; for ke N with respect to @ - |, , . If there 1s a num-

a solution a, e A, for each p. 1 <p< 7., and cach A = k.

4.3, Examples

In this section we want to give two applications of the above theory. For
that let p=x and {B,},.. be a sequence which in addition to
Assumption | fulfills (17).

4.3.1 Generalized Rational Approximation

Let X be the product space U x V where U and V' are generated by the
linearly independent functions u,.... u, ¢ C'(B) and r,.... v, € C'(B), resp..
and let

I, ) e = max ] g. ] . (1] g 101 5]

Further, for 0 (0, 1) given let
A= {(u,v)e X[o<v(x)< 1, YE B (20)

and correspondingly let

Ay=Hu vye Xlo<e(x) < 1. X€B, ;. (21)
If we define T: 4 — C(B) through

[T(u, v} J(x)=u(x)iv(x), NEB.
then (P) becomes a problem of generalized rational approximation. In the
following we want to show that for this problem all assumptions of
Theorem | arc fulfilled and that thereby the results of [11] follow
immediately (provided that we have U, V < C'(B) instead of U, V < C(B)).
For that let in particular u,... u, and v,..., v, be linearly independent on
B.. keN.
LEMMA 5. There exists a constant Ce R so that
max { o]l g, 16l g} < C for all ve V with (u.v)e A, keN,

Proof. Let v=>'_,av; with (u,v)eA,, keN. Then we have
1220  a;vill 5, <1 which implies [la]l, <, for a constant €, and all ke N
(e.g. usc Example 2.1 in [16] and note that C, , , < C,).
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LEMMA 6. There are numbers kieN and p, €(0,0), keN, with
Wi oy Sty and limy  , p, =0 such that in case k= k; A, is contained in

Hu, v)e X|0—p, <v(x) <1+ py, xe B}

Proof. From Lemma 5 we have for all ke N that to each x € B there is
an element x, € B, with

lo(x)—ov(x)| < Ch(B,, B), veA,.

The remainder of the proof follows from Assumption | and (17).

Lemma 7. There is a ky € N so that T can be defined on A, and Ci4(Ay,)
is bounded.

Proof. By Lemma 6 T is defined on A4,,. For (u, v)e C¥3(A4,,) we have

=3
Ay = H"‘/UHBA P Hu”B;j

Therefore, we can conclude for all sufficiently large & that there is a con-
stant (', (independent of k) such that further max {|ul 4. |a|z} < C,. This
together with Lemma S yields the requested result.

From Lemma 6 we can easily conclude now that (20), (21) satisfy
Assumption 2. Furthermore, it is easily seen that 7 is continuous on A4,
and that, therefore, Lemma 3 applies here. Then the equicontinuity of the
T(i,, ¢,) on B, where (u,, t,) is a best approximation of (P,), is a con-
sequence of Lemma 3 (iii).

4.3.2. Best Approximate Solutions of a Boundary Value Problem

In [7, 8] Henry considers best approximate polynomial solutions to the
following boundary value problem: Find ye C*[0, ¢] so that

Ty ="+ Flx, v, v)+ G(x, v,y )=r(x)on [0, c] (22)
."(0) =a,, v'(0)=a,

where F, G, and r satisfy certain assumptions (cf. [8]). We define here X to
be the space of all polynomials on B= [0, ¢] with degree at most n — 1 and
equip X with the norm

|yl y=max{[l vz, |3z 1y"1s} yeX
Futher, we set
A=A, ={yeX|yv(0)=uay y'(0)=a,}.

Finally, we require that B, contains at least n+/ points (for / see [8]).
Obviously 7 maps A continuously into C[0, ¢].
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In [7. 8] the existence of solutions of (P} and (P,) as well as the con-
vergence of the p, to p has been established. With the following we show
that the assumptions made in [8] immediately imply the boundedness of
the C%(A,) for all £ e N so that the requested existence of solutions and the
convergence of the discretization errors follow from Lemma3 and
Theorem 1.

LEMMA 8. For every o 20 and every ke N, CX(A,) is hounded.

Proof. Let v,=x', 0<i<n—1, B=(py... 0, )eR" and a(x)=
oo Bivilx Hence for ae CX(A,) we have [|Ta| 5 <o so that from (22)
we obtain

1GCa a g <o+ a g+ 1FC L a d) g, (23)
If we define now
/N [ /j: n { /j’ >l
0, = min u(D v, . v
ST (Z TR

we conclude from the assumptions in [8] that o, is positive (cf. Lemma I,
[8]) and that further (23) implies

LBy

1Bl ox <a+ B , max e/ 15+ OUAIT)

(where o :=7 and r:= ||, here Because of 7 >max(1, ) there exists a
constant C >0 so thdt Bl <

Hence all assumptions of Lemma 3 are fulfiled here. The equicontinuity
of the {Td, |, .« finally can be established by Lemma 3(iii) and by the con-
tinuity assumptions on F, G, and r (cf. [8], p. 261).
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