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In this paper we extend the results on discretization errors in linear
L, -approximation problems by Cheney [4 J to a broad class of nonlinear
Lp-approximation problems with constraints where I ~[I~x. (1987 AcademIC

Press. Inc

I, INTRODUCTION

Let (X, II ' II x) be a linear normed space of dimension n generated by
VI'"'' VII and let A s X be a nonempty closed set. Further, let 1~ p ~ 00 and
Be [R' be a compact set; in particular, let B = [c, d] if 1~ P<x, Then
qB) shall be the space of all real-valued continuous functions on B equip
ped with the L,,-norm

I
max If(OI
~ E B

Ilf118= 1

{rlf(OIl'd~} I'

ifp=oo,

if 1~p < 00,

(1 )

forfE C(B), Finally, let rE qB) be fixed and T: A -> qB) be a continuous
operator. Then we consider the nonlinear approximation problem

(P) Minimize Ilr - Tall 8 on A

with

p = inf{ Ilr - Tall 8 la E A}. (2)

We say that GE A is a solution of (P) if the infimum in (2) is achieved for
GEA,
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In practice it usually is impossible to solve (P) directly. In order to han
dle (P) numerically, one will, therefore, try to "simplify" the problem
through discretization in the following sense. Let B k S; B be compact; in
particular, for 1~p < 00 let Bk consist of k points (jk) E IR, I ~ i ~ k, with

Setting

we define the discrete semi-norm corresponding to (I) by

II/IIB,=
max If(OI
sE Bk

if p = 00,

if I ~p < oc.

We assume further A k ;2 A to be a closed upper set of A in X and
T: A k -+ qB) to be defined and continuous on A k • (Note that the range of
T is in C(B) S; C(Bd). If e.g. A is the solution set of infinitely many linear
constraints, A k may be the solution set of finitely many of them. Then
instead of (P) one will try to solve the problem

(Pd Minimize Ilr- TallB, on A k •

In correspondence with (2) we set

and call {h E A k a solution of (Pd if it exists.
A question of obvious interest is now: provided that {BdkE Nand

{Ad kEN are sequences which in an appropriate way converge to B and A,
resp., do the Pk tend to P for k -+ oo? It is well known that this question
can be answered in the affirmative, if T is linear and e.g. A = Ak = X (cf.
[4,20]). Furthermore, it has been shown that there are nonlinear
problems where the Pk do not converge to P (see [6] and the examples
below). This is disturbing in view of the fact that almost all algorithms for
the solution of approximation problems, including those for the solution of
semi-infinite programming problems (cf. [9]), are based on discretization.
Hence it is of big practical importance to identify such operators T for
which the requested convergence can be shown.
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For linear unconstrained problems, i.e., if T is linear and A = A, = X. the
problem of the convergence of discretization errors for p = J. has been
studied first by Cheney (sec [4J). The author of [20J gives a
corresponding proof for p = I which can be easily transferred to the case
I <p <x. Results on the rate of convergence have been obtained in [3]
for p =x and in [14 J for p = I. Finally, for linear problems which arc
equivalent to certain semi-infinite programming problems a convergence
result of the requested type can be found in [9].

Concerning discrete nonlinear approximations, almost exclusively
exponential and rational approximation problems have been investigated
so far (cf. [I, 2, 11, 15, 17, 18, 19 J). However, it has been noted that the
discretization of approximation problems can be considered as a special
perturbation problem in optimization and hence can be tackled with the
available theories in this connection (see e.g. [IOJ). We shall discuss the
relation of our results to this latter approach in Remark I below. Our aim
here is to derive sufficient conditions for the convergence of the P, to P
which can be actually verified in many circumstances.

The plan of this paper is as follows:
In Sect. 2 we prove convergence of the PI, under the assumptions that the

(Pl.)' k'?-k. possess solutions iikEA, and that :Tlik;k k is equicontinuous
on B. In the remaining sections we arc concerned with the verification of
these assumptions in specific situations. So we first show in Sect. 3 that in
case T is linear existence of the Ii, (which often can be guaranteed then)
implies the equicontinuity of : Tiil.:k k. Thereby results in [4J and [20J
are generalized since we allow here problems with constraints and since
the proofs are valid for every LI,-norm. Then in Sect. 4 we turn to non
linear problems. We first provide a lemma which for many nonlinear L, 
problems ensures the requested existence of solutions and equicontinuity.
Afterwards we study the corresponding properties of T for 1~ p < x.

We have applied our results successfully to a variety of nonlinear
approximation problems, in particular to problems where T has been a dif
ferential operator. In the final part of this paper we present two such
applications and thereby show that some former results of other authors
follow qt.ite easily from our theory.

2. A CONVERGENCE THEOREM

We begin by providing some definitions. Let T be defined on S c;; X.
Then for CJ. '?- 0 we set

(',(S)= :aESIIITaIIB~CJ.; (3 )
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and correspondingly

(4)

Further, we fix some ao E A and a number (J > 0 ((J = 0 is possible if p =Xj)

and define

11 0 = Ilr- TaolI B + IlrIIB+(J (5)

Moreover, if M and Q are nonempty subsets of a linear normed space
(Z, II . 11-.,), we write

h(M,Q)=sup inf Ilx-)'II;;:.
\E:QrE/l.l

If lM d, E 1\, IS a sequence of nonempty subsets of Z, then
lim'~fh(M,M,)=O if and only if for each E>O there is a number
k(c) E 1\1 such that for all k ~ k(E)

M,c;;.M,= {xEZI inf Ilx-yllz";E}.
yE /\.1

We are now in the position to state the following two assumptions.

ASSUMPTION 1. {Bd, EN is a sequence of compact subsets of B in
(IR" II· 112) with lim,., h(B" B) = 0 where II· 112 is the Euclidean norm.

ASSUMPTION 2. {A d, E 1\, is a sequence of closed subsets of (X, II . II x)
where

(i) Ac;;. ... c;;.Ak+,c;;.A,c;;. ... c;;.A,c;;.X.

Further, T is defined on Ai for a k E 1\1, i.e. T: Ai ---> C(B), and either

(ii) lim,~ x h(A, Ad = 0 or

(ii)' lim,~ x h(C'o(A), C:o(Ad)=O.

With regard to Assumption 2 let us mention that in applications (ii)'
may be satisfied because of the possible boundedness of the sets C,o(A) and
C:o(A,) while at the same time (ii) may not be true. Obviously,
Assumption 2 is fulfilled if A = A k for all k E 1\1.

The level sets (3) and (4) play an important role in approximation
theory in connection with questions of existence of solutions and of
convergence of algorithms (e.g. [16]) as well as questions arising with
discretization (see Sect. 4). This is due to their possible boundedness and
the following facts.
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LEMMA I. (i)p=inf{ r-TaliHlaECx,,(A);.

If UE A is a solution of (P), (J is element of C
XII

(A I.

(ii) Under Assumptions I and 2 there is a numher ko ? k, Irhere k 0 = k
ifp = x, such that fe)r all k? ko

Pk = inf{ III' - Tall 11, la E C~o(Ak)}'

111'- TaIIB~ 111'- TaolI B}and

and

Further, if ak E A k solves (Pd, k? ko, Uk is in C~II(Ad.

Proof (i)

P = inf{ III' - Tall Bla E A

?inf {llr- TallBlaEA

From the same inequalities it is obvious that a solution aE A of (P) is in
C'o (A) if it exists.

(ii) By virtue of Assumption 2, all is element of A k . Hence

Pk?inf[llr- TaIIB,laEA k and

If p = Xi,

(6)

for all k? k is obvious. In case I ~ P < x, (6) is true for all sufficiently
large k by virtue of the definition of the Riemann integral. The remainder
of the proof follows the proof of (i).

We now give the main result of this paper. For that we note that
N= Uk;;,k C~o(Ad is a subset of A k and define

N,= [aEX Illa-hll\~c; fora hEN}

to be an c-neighborhood of N in X.

(7)

THEOREM I. Let Assumptions I and 2 he fulfilled. Further, let T he con
tinuous on A k for kEN. Moreover, let T he uniformly continuous on N, n A k
for an i> 0 in case A =1= A k for some k ? k. Further, let (Pd have a solution
ak E A k for each k? k and let {Tu k ] D k he equicontinuous on B. Then H'e

have:

(i) limk~x Pk=P,

(ii) limk_ x 111'- TadB=p (ak may not he in A).

If in addition there is a constant C so that Ilak II x ~ Cfor all k? k, then

(iii) {Uk} k;d possesses at least one accumulation point which lies in A
and each such accumulation point solves (P). Moreover, if (P) has a unique
solution a E A, then lim k ~y Iia - ak II x = O.
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Proof (i) With respect to Assumption 2 we define either

or

M=A and

and

In any case M and M b k ~ k, are nonempty sets. We fix now e E (0, §]
and set

l0, if A = A k for all k ~ k,
L1(e) =

sup{ II Ta - Thll Billa - hll x ~ e, a, hE N,J'I Ad, else.

Obviously, we have L1(e) -> °for e -> 0.

Now we observe first that by Lemma I there is a number k o~ k such
that Gk is in C~(Ak)sMk if k~ko. Further, due to Assumption 2, thereu _

exists a number k I ~ k such that we have M k S M, for all k ~ k 1. Hence if
k ~ max(ko, k 1)' for Gk we can find an element iik E M with Iliik- Gkll x ~ e.
In particular, we can choose iik = Gk if A = Ak for all k ~ k.

Next we note that in any case M sA S Ali holds true. Therefore we can
infer that Gk as well as iik belong to (N, n Ad S (N,,{l Ad for all
k ~ max(k(j, k 1). Thus if k ~ max(ko, k 1) we have

inf Ilr~ TaIIB-llr- TakIIB~ Ilr- TiikIIB-llr- TakIIB~L1(e). (8)
(lEA

Our next objective now will be to study the expression

Ilr- TGkIIB- inf Ilr- TaIIB'= Ilr- TakIIB-llr- TGkIIB,· (9)
liE AI.

For fE qB) we define

w(j, 1:) = sup{ If(x) -f( y)1 I Ilx - YI12 ~ 1:,

to be the modulus of continuity off on B. Then we set

j1(e) = sup' W(TGb e)
k~k

X, yE B} (10)

and we observe that j1(e) tends to zero with I: -> °because of the equicon
tinuity of {TGk} k~ k on B. Further, due to Assumption I there is a number
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k2~k so that h(Bk,B)~I; for all k~k2' Let now k~k2 and let first
1~ p <x. Then choose ()~k I E B such that

Hence, we have II ~~k) - 8jkl l1 2 ~ I: for all i E { 1,... , k j. If we use now

k .U,I

Ilr-TliklliJ= L: f·\.! Ir(x)-(Tlid(x)lf'dx
Ik)

i= I .1/ 1

k

~ L: Ir(8jk l)- (Tlik)(8~klW'h~k)
i= I

and apply Minkowski's inequality twice, we obtain

III' - Tak II B-Ilr - Tad Be

~ tt I[r(8jkl) - (Tad(8~k))] - [rWk)) - (TlidWkl)]1 f' h~kl} If'

~ ttl Ir(O~k)) - r(~~kIW WI} If'

+ttl I(Tad(8~kl) - (Tlid(~~klW' WJ p

~K{w(r,[;)+J1(I;)j (II)

where K = (d - c) II'. In case p = ex; (11) is easily seen to be true with K = 1.
Hence combining (8), (9), and (11) we get for 1 ~ p ~ x and
k~max(ko,k"k2)

inf Ilr-TaII B- inf Ilr-TaIIB,~L1(B)+K{w(r,f,)+J1(I:)}. (12)
a f:' A (IE A/.,

By virtue of our assumptions, the right-hand side of (12) tends to zero with
I: --+ O. For p = ex; it is easily seen that the left-hand side of (12) is always
nonnegative since we have Bk S; B and As; A k . Thus, (i) is proved in this
case. If l~p<CfJ, for every aEA there is a number E(a,h(k l ) for
h(k l = maxI ~i~k hVI so that E(a, h(k l ) --+ 0 for h(kl--+ 0 and

{f' Ir(x) - (Ta)(x)11' dX} I if'

= tt Ir((jk l ) - (Ta)((VI)1 f' h~k)} lip + E(a, h(k l ).
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We note that h(k) tends to zero if and only if h(Bb B) does so. Now we
choose bEA so that 111'- TbIIB-inCEA 111'- TaIIB<e. Then there exists a
k 3 ?:-k such that IE(b, h(k))I:(,e for all k?:-k 3 • Hence

P+ e?:- 111'- Tbll Bk + E(b, h(k))?:- Pk - e, k?:- k 3 . (13)

Combination of (12) and (13) yields the requested result.

(ii) From (8) we have

(14 )

for all k?:-max(ka,kJl and from (II) and (14) we obtain recalling (i)

(15 )

Finally, we write

Ip - III' -- Tad B1:(, Ip - Pk I+ I III' - Tak II Bk - III' - Tak II BI

so that (ii) follows from (i) and (15).

(iii) By assumption all ak, k?:- k, are elements of the compact set
[a E Xiliall x:(, C]. Hence there exists a subsequence {ad lEN of {ad k;;,,,

which converges to an element il E X. Since again by Lemma I ak , is in M k ,

for all sufficiently large i and since M is a closed set, it follows easily from
Assumption 2 that il lies in M. Further, since T is continuous on A",
II I' - Tad B tends to II I' - Til liB for i ~ Xc. Therefore, from (ii) we get that a
is a solution of (P). Moreover, if (P) possesses a unique solution aE A,
every convergent subsequence of {elk} k;;," and thus the whole sequence
converges to a.

Remark 1. If (P) is being considered as a special optimization problem
and (Pk) as a corresponding problem with perturbed data, the questions of
this paper can be attacked with the perturbation theories in optimization.
However, as we shall show, little is gained by such an approach since the
verification of the assumptions of these theories for our problem requires
most of the arguments of the proofs presented here.

Let us first relate to the results in [12]. We can fit the problems (P) and
(Pk) into the model considered in [12] if we choose the parameters there
as follows:

E:= U C~o(Ak)UC~o(A)
k;;'''

(equipped with II' II x),

(,4049 )-5

X:= C~o(A),

X k := C~o(Ak)'

S :=X, I(x):= 111'- TxII B ,

Sk := X b Ik(x) := III' - Txll Bk'



264 REMBERT REEMTSE"i

where we suppose that Assumptions I, 2(i), and (ii)' are fulfilled and Tis
continuous on A k' (The reader may verify that in case of Assumption 2( ii )'
Theorem I and Lemma 3 remain valid for E instead of N" n Ak)' Then
Satz 3.1 in [12] shows first that for the proof of Theorem 1 (i) the
assumptions of the existence of the a k and the equicontinuity of : Ta k } k? k

on B can be replaced by the "uniform equicontinuity of the f~ on E" and
condition (3.1) ebd. However, if we wish to establish this equicontinuity of
the fk here for nonlinear T, we shall assume the compactness of E (which
implies the existence of the ak (cf. Lemmas 1 and 3)) and, moreover, have
to verify condition (3.3) in [12] (see Lemma 3.2 ebd.). The proof of this
latter condition can be accomplished with arguments similar to those
which we need for the proof of Theorem 1 (i) above. The reader may
further confirm that in case T is linear (where the assumption of the com
pactness of E usually is too strong) the proof of the assumptions of Satz 3.1
requires similar estimates as we shall derive them in the proof of Theorem 2
below.

Corresponding considerations hold true for the theorem in [10]. (We
also note that condition (1.1) there can only be fulfilled if p = XJ). Further
more, the author of [13] summarizes a large number of results in
parametric optimization by using the concept of set-valued mappings. But
again the verification of the assumptions of the respective theorems for our
problem necessitates the same boundedness and equicontinuity
assumptions which we referred to above (cf. condition (2.2) there).

3. LINEAR OPERATORS

If T is a linear operator, the existence of solutions to (P) and (P k ) can
often be proved with classical arguments. For example, by the following
Lemma (P) as well as (Pk) has a solution if, e.g., A = X and if T is the iden
tical operator.

LEMMA 2. Let T be linear. If the image T(A) of A under T is closed, (P)
possesses a solution aEA. Correspondingly, if T(A k ) (k~k) is closed in
qBd with respect to 11'11 Bk' (Pk ) has a solution ak E A k ·

Proof By our assumptions, the set

: Ta E T(A)I II Tall B ~ al)} s; T(X),

where al) is defined by (5), is compact. Hence the existence of aE A can be
concluded from Lemma 1 and Weierstrass' theorem. Correspondingly, the
existence of ak is proved.

Let us further mention that for p = XJ another tool for the verification of
the existence of solutions to (P) and (Pk) is given by Lemma 3. In com-
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bination with Theorem 1 and Lemma 2 the following theorem now extends
results of [4, 20] for p = 00 and p = 1, respectively.

THEOREM 2. Let Assumptions 1 and 2 be fulfilled and let T be a linear
operator from X into C(B). Further let (Pk) have a solution IikEAkfor each
k ): k. Then the following is true:

(i) {Tlidk;,,( is equicontinuous on B.

(ii) If TV I '00" Tv" are linearly independent on B, there is a constant C
so that lilik II x:::; C for all k): k.

Proof (i) Let w; = Tv; for i E {I,..., n} and let the first m:::; n of the w; be
linearly independent. Further, for e > 0 we define

Qm(e)= max w(w;, e)
t ~;~m

with w (10). Obviously, Qm(e) tends to zero if e --+ O. Then if
Tli k = L;n~ 1137 w; and Ilx - y112:::; e we obtain

where II' III is the II -norm in [Rm. Hence the proof of (i) is completed if
there is a constant M such that II13k lll:::; M for all k): k.

For that we define

8m = min II f 13; w; II .
II/illl~ I ;~ I B

Due to the linear independence of the w; we have 8m > O.
Now we choose e>O sufficiently small so that Qm(e):::;8m/(2K) with K

from (11). Then there is a number k 1): k so that h(Bk , B):::; e for all k): k I'

If we make use of (11 ) for r = 0, we finally get for all 13 E [Rm and k): k I

8m 1113111 :::; II;~I 13;w; lin :::; K Qm(e)II13111 + t~l 13;w;L
:::; 82m 111311 1+ ll;~l 13;w;Lk

so that by Lemma 1 we have for all k): max(ko, ktl

k 2 II ~ k II 2ao1113 III:::; 8
m

;~I 13; W; Bk:::; e::
(ii) Let now Iik=L;'~1 Y7v;. Then in the proof of (i) we have m=n and
137=Y7, 1 :::;i:::;n, so that (ii) is a consequence of (16).
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Remark 2. Let A = X, l' be linear, and Tv I' .... 1'1'" be linearly indepen
dent. If I < p <YJ, then (P) always possesses a unique solution. In case
p = I or p = (X, it is well known that a solution of (P) is unique if
hi,"" h" form a so-called Haar system on B (e.g. [20J).

4. NONLINEAR OPERATORS

If T is a nonlinear operator, in general the existence of solutions to (P)

and (Pd is difficult to verify, not to speak of the uniqueness of solutions. In
4.1 we will provide a condition which for p = 00 guarantees existence of
solutions a E A and ak E A k and in many situations equicontinuity of
(Tak}k EN' In 4.2 we will study this condition for the case that 1~ p <x.
Finally, in 4.3 we will apply our results to two examples.

4.1. The case p = 'x

Throughout this subsection we assume p = 'x. Then we can state the
following lemma.

LEMMA 3. Let Assumptions I and 2 he satisfied and let in addition

Bk <;; B k I I <;; ... <;; B, k E ~~. (17 )

Further, let there exist a numher k such that l' is continuous on A k and
C~() (A k) is hounded. Then we have:

(i) (P) and (Pd, k?:-k, possess solutions aEA and akEA k , resp.

(ii) T is unifr.)rmly continuous on N, n A k fr.Jr each (; > 0 \\'ith N, (7).

(iii) There is a constant C such that Ilad x ~ Cfor aff k?:- k.

Proo{ It can be easily proved that due to our assumptions

(18 )

holds true. Hence C,,, (A) and C~" (A d, k ?:- k, are bounded and by the con
tinuity of T also closed sets in X. So recalling Lemma I we can establish (i).
Finally, (ii) and (iii) follow from the fact that (18) implies Uk, k C~" (A k ) =

C~,,(Ad.
Statement (iii) of Lemma 3 often ensures the equicontinuity of the

{ Ta k } k? k' Furthermore (18) shows that boundedness of C~1l (A k) for a
kEN guarantees boundedness of C," (A). Unfortunately, in practice it is
easier to examine C,,,(A) than C~,,(A,d, and, as the following example
shows, boundedness of C,,,(A) by no means implies necessarily bounded
ness of any C~,,(Ak)' Moreover, this example shows that the uniform
problem can have a solution while at the same time none of the discrete
problems possesses one (see also [6 J for another example).
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EXAMPLE 1. Let A = X = IR, B = [0, 1], r = 0 on B, and let T: X --+ C(B)
be defined by

Then because of

max I(Ta)(x)1 = I +a2

\·E B

C,(A) is bounded for every a>1 and infaEa<IITaIIB=1 is uniquely
achieved for a=O. If we define now Bk = [£k> I] where {£dk;,O is a non
increasing sequence of positive reals which converges to zero, then we have

max I(Ta)(x)1 =(1 +a2 )e a
2
'k

YE B/...

and none of the C~(A) is bounded. Besides infaEH IITaIIBk=O is not
attained for any a E IR.

Remark 3. So far we have considered the case that the range of T is in
C( B). However, we often will encounter the situation that T = (T) ,... , Tq )/

where T; maps A into C( BIi )) and the BIi !, i E {I, 2, ... , q }, are compact sub
sets of IR'. In this case T is a mapping from A into the product space
C(B1'1)X ... XC(B(")) which we equip here with the norm

Illrll1 8 = max Ilr i I18'''' r,EC(B Ii
)),

1:S; i~ q

where II· II Bid is the sup-norm on BIi ). for every i E {I, ... , q} let now
[Bk;)} kEN be a sequence of sets which fulfills Assumption I and let

Illrll18, = max Ilr; II 8('1, kEN.
1 ~1:S:;{1

Further, let here r; E C( BIi)), i E {I, ..., q}, be given and let us consider (P)
and (Pk) with the two-bar norms being replaced by the three-bar norms.
Then if we substitute III· III B and III . III Bk for II . II B and II· II Bk throughout
the preceding part of this pape],", resp., and if the properties which we
assume above for T are required for all components T;, i E {I, ..., q}, of T
here, Theorems I and 2 as well as Lemmas I, 2, and 3 remain valid. In this
way convergence of the discretization errors can for instance be shown for
the multi-dimensional constrained approximation problems in [5].

4.2. The case I ~ P < 00

Let us demonstrate first that a similar situation as in Example I for
p = 00 can appear if I ~ P < 00.
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EXAMPLE 2. Let T be defined as in Example 1, but choose p = I here.
Then for all a i= 0 we compute

II Tall B= r(I + a2) e ,,'\ dx = (I + a 2)( 1- e a-) > l.
o

Hence inf"E u;! II Tall B= 1 is uniquely achieved for a = O. If now
o < ~\k) < ~~k) < ... < ~ik):s 1, we get

k

k(1+a2)e-,,2~\" max hjkl~ L I(Ta)(~jk))lhjkl=IITaIIB,
I ~l~k i= I

~ ~l!.. )a-" min hjkl
I ~ i:::;:k

a' min h1kl
I •

1~ i:S: k

Hence for fixed k, II Tall B, tends to zero for lal --+x;. Therefore, none of the
e~ (A) is bounded as well as inC, Eu;! II Ta II B, = 0 is not achieved for any
a E Ikt

However, opposite to the case p = oc, for 1 :s p <x; it is also possible as
the following example shows that all of the e~ (Ad are bounded (which
implies the existence of solutions to the discrete problems) while e, (A) is
unbounded for every (1 > 0 (and the uniform Lp-problem has no solution).

EXAMPLE 3. We assume again A = X = IR, B = [0, I] and p = I. In
addition we define r=O on Band T: X --+ e(B) by

(Ta)(x) = (I + a2)/( 1 + a4x), a E IR.

Then for a i= 0 we have

1 1 + a2 1+ a2

IITaIIB=f --4- dx =--4- 10g(1 +a4)
ol+ax a

which tends to zero for lal--+ 00. Hence infaEJ;j II TaIIB=O where the infimum
is not achieved for any a E Ikt Further, if 0 = ~\kl < ~~kl < ... < nkJ:s 1, we
obtain

k

IITaIIB'= L I(Ta)(~jkJ)lhjk'~h\k'(1 +a2)~h\k)a2.
i= I

Consequently, for fixed k, II Tall B, tends to infinity for lal --+ 00. Therefore,
all e~ (A) are bounded and all discrete problems possess solutions. It is not
seen here whether the Pk converge to P or not.
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Thus for 1~ p < 00 a result corresponding to Lemma 3 cannot be
established. However, we can obtain some insight into the situation here if
we relate the level sets C,(A) and C~(Ak) where C(B) is supplied with an
Lp-norm, 1~p < 00, to the corresponding sets where C(B) is associated
with the supremum norm. For that matter we write here II' II B.p and
II·IIB,.I' instead of II' liB and II· liB, and rename C,(S) and C~(S) by C~(S)

and C~·p(S) in order to mark that the (semi-) norm on C(B) equals II'IIB.I'
and 11'11 B,.I" resp. Then we can state the following lemma.

LEMMA 4. Let T he defined on S s X and 1~ p < 00. Then we have

(i) C~ (S);:;:> C~/Id c)1- I p(S);:;:> C;:(d _el (S),

(ii) C~"(S);:;:>C~/(dcll 'r(S);:;:>C~i(;J_cI(S),

(iii) C~'x(S);:;:>C~),,(S);:;:>C~;;'''/ld ell Ir(S)

where Illkl=minl'Ol;i'Ol;khVI.

Prooj: If v E C[e, d] we have by Holder's inequality

f
d

IlvII B., = . Iv(x)'ll dx~ IlvIIB.1'1111IB.p/(p-l,
(

= IlvIIB.p(d-e)I-I;p~ IlvIIB.L(d-e)

which yields (i). Similarly we obtain

k

IlvIIB" = L IV(~~kl) h~kl,/ph~klll II/PI

i= 1

~ Ilvll B,p ttl hV1rl'-1 1/1'

= Ilvll B,)d- e)1 -1/1' ~ IlvllBb (d- c) (19)

and hence we can derive (ii). Finally, with Iv(~~k))1 = maxI 'OI;id Iv(~~kl)1 we
arrive at

k

llvll B" 'Il lkl = Iv(~~k))IIl(kl ~ L Iv(~~kl)l h~k) = livllBk,l
i= I

which together with (19) implies (iii).
Thus, by previolls arguments (cr. Lemma 3) we can draw the following

conclusions from I '.:mma 4.

Conclusions. (i) If T is continuous on A for II' II B.L and C~ (A) is
bounded for &= !Xu max( 1, d - c) with !Xu (5), then (P) has a solution aE A
for all p, 1~ p ~oo.
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(ii) Let Assumptions 1 and 2 be fulfilled. Further, let ( 17) hold true and
T be continuous on A£ for f.: E ~ with respect to .! Ii. , . If there is a num
ber k(l ~ f.: such that C~"' (A k,,) is bounded for all 1. ~ O. then (P k ) possesses
a solution (IlEAl for each p. I ~p~J.. and each k~k{).

4.3. Examples

In this section we want to give two applications of the above theory. For
that let p = x and ( Bk } k be a sequence which in addition to
Assumption I fulfills (17).

4.3.1 Generali::ed Rational Approximation

Let X be the product space U x V where U and V are generated by the
linearly independent functions U 1 •...• u, EO C 1( B) and v I •...• v, E C I (B). resp..
and let

Further. for () E (0. I) given let

and correspondingly let

A k = :(u.I')EXI()~I'(x)~l.

If we deline T: A ---> C( B) through

[T(lI. /')J(x) = lI(.Y)/l'(x).

XEB:

YE B.

(20)

(21 )

then (P) becomes a problem of generalized rational approximation. In the
following we want to show that for this problem all assumptions of
Theorem I are fulfilled and that thereby the results of [II J follow
immediately (provided that we have U. V C C I (B) instead of U. V c C( B)).
For that let in particular U I •...• lI, and 1'1 ....• I', be linearly independent on
Bk • kEN.

LEMMA 5. There exists a constant C E [R; so that

Proot: Let v='LL,ajl'j with (u.u)EA k • kEN. Then we have
IIL::~I ail';IIB,~ I which implies Ilalll~Ck for a constant C k and all kEN
(e.g. use Example 2.1 in [16J and note that Ck f I ~ Cd·
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LEMMA 6. There are numhers k} E Nand J1k E (0, (i), kEN, with
J1k + I ~ J1k and lim k ~ f. J1k = °such that in case k ~ k} Ak is contained in

[(u, v) E XI(i - J1k ~ v(x) ~ I + J1" XE B}.

Proal From Lemma 5 we have for all kEN that to each x E B there is
an element X k E Bk with

Iv(x) - v(xdl ~ C h(B" B),

The remainder of the proof follows from Assumption I and (17).

LEMMA 7. There is a k 4 E F\J so that T can he defined on A k, and C~~(Ak4)

is hounded.

Proo( By Lemma 6 T is defined on A k,' For (u, v) E C~(~ (A k,) we have

:X o ~ Ilull'll Bk ~ Ilull B,'

Therefore, we can conclude for all sufficiently large k that there is a con
stant C 1 (independent of k) such that further max [Ilull fl' 111ili B}:( C j • This
together with Lemma 5 yields the requested result.

From Lemma 6 we can easily conclude now that (20), (21) satisfy
Assumption 2. Furthermore, it is easily seen that T is continuous on A k4
and that, therefore, Lemma 3 applies here. Then the equicontinuity of the
T(ii" 1\) on B, where (ii k , ud is a best approximation of (Pd, is a con
sequence of Lemma 3 (iii).

4.3.2. Best Approximate Solutions of a Boundary Value Prohlem

In [7, 8] Henry considers best approximate polynomial solutions to the
following boundary value problem: Find .1' E C2 [0, c] so that

Tl' := .1''' + F(x, 1', .1") + G(x, .1', y') = r(x) on [0, c] (22)

.1'(0) = aD, .1"(0) = a j

where F, G, and r satisfy certain assumptions (cf. [8]). We define here X to
be the space of all polynomials on B = [0, c] with degree at most n - I and
equip X with the norm

II yll x = maxi II yll B' II y'll B' II y"ll B}, y E X.

Futher, we set

A = A k = (.I' E XI .1'(0) = aD, y'(O) = a j }.

Finally, we require that B I contains at least n + I points (for I see [8]).
Obviously T maps A continuously into C[O, c].
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In [7, 8] the existence of solutions of (P) and (Pd as well as the con
vergence of the Pk to P has been established. With the following we show
that the assumptions made in [8] immediately imply the boundedness of
the C~ (A d for all kEN so that the requested existence of solutions and the
convergence of the discretization errors follow from Lemma 3 and
Theorem I.

LEMMA 8. For every Cf. ~ 0 and every kEN, C~ (A k) is hounded.

Proof Let vi=x', O~i~n~l, fl=(/Jo, ... ,/3" I)EIR", and a(x)=
I;'~(i fl,t',(x). Hence for aEC~(Ad we have IITaIIH,~:x so that from (22)
we obtain

(23)

If we define now

/ II I 1>- II I /3 ) 'I
(Jk= 1~,l~1 u<P(,~owt ri

' ,~o II/il'll r; I,H"

we conclude from the assumptions in [8] that (J k is positive (cf. Lemma I,
[8]) and that further (23) implies

11/311;I(Jk~:x+II/illl max Ilr;'IIH+O(II/3II'il
() i:O;n I

(where :x :=,' and r := 11/3111 here). Because of " > maxi L t}) there exists a
constant C> 0 so that 11/3111 ~ C.

Hence all assumptions of Lemma 3 are fulfilled here. The equicontinuity
of the {Tak} kc 1\, finally can be established by Lemma 3( iii) and by the con
tinuity assumptions on F, G, and r (cf. [8], p. 261 ).
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